當前位置:首頁 » 日本資訊 » 日本什麼時候開始利用核能源

日本什麼時候開始利用核能源

發布時間: 2022-05-03 15:56:14

❶ 日本國大力發展核電站的理由是什麼

1)、.群島國家,國土面積狹小,常規能源缺乏
2)、.人口稠密、經濟發達,能源需求量大3)、.日本科技力量雄厚4)、.核能能量密集,地區適應性強5)、.核電站需水量大,島國四面臨海,便於取用冷卻水和排放廢熱水 核電站就是利用一座或若干座動力反應堆所產生的熱能來發電或發電兼供熱的動力設施。核電站與常規火電站相比,有很多優點:
1.核能發電不像化石燃料發電那樣排放巨量的污染物質到大氣中,因此核能發電不會造成空氣污染。
2.核能發電不會產生加重地球溫室效應的二氧化碳。
3.核能發電所使用的鈾燃料,除了發電外,沒有其他的用途。
4.核燃料能量密度比起化石燃料高上幾百萬倍,故核能電廠所使用的燃料體積小,運輸與儲存都很方便,一座1000百萬瓦的核能電廠一年只需30公噸的鈾燃料,一航次的飛機就可以完成運送。
5.核能發電的成本中,燃料費用所佔的比例較低,核能發電的成本較不易受到國際經濟情勢影響,故發電成本較其他發電方法為穩定。
日本國土范圍小,土地有限,化石燃料主要依靠進口,來源不穩定且費用高昂,.核能發電能有效解決問題且日本有相關科學技術。

❷ 核能是什麼時候開始被使用的

1945年8月6日。美國在日本的廣島投下了一枚代號為「小男孩」的原子彈,這是人類對核能的第一次利用。從此人類開始將核能運用於軍事、能源、工業、航天等領域。美國、俄羅斯、英國、法國、中國、日本、以色列等國相繼展開核能應用研究。

❸ 二十世紀,日本核電站的發展情況是什麼樣的

1986年7月18日,日本綜合能源調查會的原子能部,提出了對21世紀日本核電遠景的預測報告,根據這一預測,2010年,日本發電用核反應堆將達86座,2030年,將達112座;核發電設備能力,2010年、2030年將分別達到當時的3.5倍、5.5倍。過25~30年左右,

日本用的電,每兩度中就有一度是核電。

日本綜合能源調查會是通產大臣的咨詢機關。它的這個預測報告制定於前蘇聯切爾諾貝利核電站事故之後,在制定報告過程中,國際油價已經出現大幅度下降。但是這個報告證明,日本並未因為這兩個因素而動搖今後發展核電的基本方向。

據日本通產省資源能源廳1987年初發表的數字表明,就是在1986年日本核電站的開工率達76.2%,創歷史最高水平。

資源能源廳說,1986年,日本全國運轉中的各種類型的核反應堆共有32座。平均開工率自1982年以來,已連續五年超過70%。這在西方發達國家中也是高水平的。若同1985年統計的開工率相比較,日本的開工率僅次於聯邦德國。

❹ 最先有造核武器,理論的國家是日本嗎

核.武.器的出現,是20世紀40年代前後科學技術重大發展的結果。1939年初,德國化學家O.哈恩和物理化學家F.斯特拉斯曼發表了鈾原子核裂變現象的論文。幾個星期內,許多國.家的科學家驗證了這一發現,並進一步提出有可能創造這種裂變反應自持進行的條件,從而開辟了利.用這一新能源為人類創造財富的廣闊前景。但是,同歷.史上許多科學技術新發現一樣,核能的開發也被首先用於軍事目的,即制.造威力巨大的原子彈,其進程受到當時社.會與政.治條件的影響和制約。從1939年起,由於法.西.斯德國擴大侵略戰爭,歐洲許多國.家開展科研工作日益困難。同年9月初,丹麥物理學家N.H.D.玻爾和他的合作者J.A.惠勒從理論上闡述了核裂變反應過程,並指出能引起這一反應的最好元素是同位素鈾235。正當這一有指導意義的研究成果發表時,英、法兩國向德國宣戰。1940年夏,德軍佔領法國。法國物理學家J-F約里奧-居里領.導的一部分科學家被.迫移居國外。英國曾制訂計劃進行這一領域的研究,但由於戰爭影響,人力物力短缺,後來也只能採取與美國合作的辦法,派出以物理學家J·查德威克為首的科學家小組,赴美國參加由理論物理學家J.R.奧本海默領.導的原子彈研製工作。
在美國,從歐洲遷來的匈牙利物理學家齊拉德·萊奧首先考慮到,一旦法.西.斯德國掌握原子彈技術可能帶來嚴重後果。經他和另幾位從歐洲移居美國的科學家奔走推動,於1939年8月由物理學家A·愛因斯坦寫信給美國第32屆總統F.D.羅斯福,建議研製原子彈,才引起美國政.府的注意。但開始只撥給經費6000美元,直到1941年12月日本襲.擊珍珠港後,才擴大規模,到1942年8月發展成代號為「曼哈頓工程區」的龐大計劃,直接動用的人力約60萬.人,投資20多億美元。到第二次世界大戰即將結束時製成3顆原子彈,使美國成為第一個擁有原子彈的國.家。制.造原子彈,既要解決武.器研製中的一系列科學技術問題,還要能生產出必需的核裝料鈾235、鈈239。天然鈾中同位素鈾235的豐度僅0.72%,按原子彈設計要求必須提高到90%以上。當時美國經過多種途徑探索研究與比較後,採取了電磁分離、氣體擴散和熱擴散三種方法生產這種高濃鈾。供一顆「槍法」原子彈用的幾十千克高濃鈾,是靠電磁分離法生產的。建設電磁分離工廠的費用約3億美元(磁鐵的導電線圈是用從國庫借來的白銀制.造的,其價值尚未計入)。鈈239要在反應堆內用中子輻照鈾238的方法.製取。供兩顆「內爆法」原子彈用的幾十千克鈈239,是用3座石墨慢化、水冷卻型天然鈾反應堆及與之配套的化學分離工廠生產的。以上事例可以說明當時的工程規模。由於美國的工業技術設施與建設未受到戰爭的直接威脅,又掌握了必需的資源,集中了一批西方國.家最好的科技人才,使它能夠較快地實現原子彈研製計劃。
德國的科學技術,當時本處於領先地位。1942年以前,德國在核技術領域的水平與美、英大致相當,但後來落伍了。美國的第一座試驗性石墨反應堆,在物理學家E.費密領.導下,1942年12月建成並達到臨界;而德國採用的是重水反應堆,生產鈈239,到1945年初才建成一座不大的次臨界裝置。為生產高濃鈾,德國曾著重於高速離心機的研製,由於空襲和電力、物資缺乏等原因,進展很緩慢。其次,A.希.特.勒迫.害科學家,以及有的科學家持不合作態度,是這方面工作進展不快的另一原因。更主要的是,德國.法.西.斯頭.目過分自信,認為戰爭可以很快結束,不需要花氣力去研製尚無必成把握的原子彈,先是不予支持,後來再抓已困難重重,研製工作終於失敗。
1945年5月德國投降後,美國有不少知道「曼哈頓工程」內.幕的人.士,包括以物理學家J.弗蘭克為首的一大批從事這一工作的科學家,反.對用原子彈轟炸日本城市。當時,中.國開始對日本進行反擊。美國在太平洋地區的進攻,幾乎全部摧毀日本海軍,海上封.鎖使日本國內的物資供應極為匱泛。二戰通.過硫磺島一戰,丘吉爾估計要徹底打垮日本,在日本本土登陸,至少還要付出100萬美軍和50萬英軍的生命。
這樣沉重的包袱美國背不起。也不想背,用原子彈是最好的方式。美國在日本的廣島和長崎投下了僅有的兩顆原子彈,代號分別為「小男孩」和「胖子」。(史料記載,這場人類有史以來的巨大災.難,造成了30萬余日本平民死亡和8萬多人受傷。原子彈的空前殺傷和破.壞威力,震.驚了世界,也使人們對以利.用原子核的裂變或聚變的巨大爆.炸力而制.造的新式武.器有了新的認識。
蘇聯在1941年6.月遭受德軍入侵前,也進行過研製原子彈的工作。鈾原子核的自發裂變,是在這一時期內由蘇聯物理學家Н.弗廖羅夫和Κ.А.佩特扎克發現的。衛國戰爭爆發後,研製工作被.迫中斷,直到1943年初才在物理學家И。В.庫爾恰托夫的組.織領.導下逐漸恢復,並在戰後加速進行。1949年8月,蘇聯進行了原子彈試驗。1950年1月,美國總統H.S.杜魯門下令加速研製氫彈。1953年8月,蘇聯進行了以固態氘化鋰6為熱核燃料的氫彈試驗,使氫彈的實用成為可能。美國於1954年2月進行了類似的氫彈試驗。英國、法國先後在50和60年代也各自進行了原子彈與氫彈試驗。中.國在開始全面建設社.會主.義時期,基礎工業有了一定的發展,即著手准備研製原子彈。1959年開始起步時,國.民經濟發生嚴重困難。同年6.月,蘇聯政.府撕毀中蘇在1957年10月簽訂的關於國防新技術協定,隨後撤走專.家,中.國決心完全依靠自己的力量來實現這一任務。中.國首次試驗的原子彈取"596"為代號,就是以此激勵全國軍民大力協同做好這項工作。19⑥4年10月16日,首次原子彈試驗成功。經過兩年多,1966年12月28日,小當量的氫彈原理試驗成功;半年之後,於1967年6.月17日成功地進行了百萬噸級的氫彈空投試驗。中.國堅持獨.立自主、自力更生的方針,在世界上以最快的速度完成了核.武.器這兩個發展階段的任務。

❺ 核電的發展過程是怎樣的

1986年10月,總部均設在巴黎的國際能源局和經合組織屬下的核能源局,分別發表報告,指出整個西歐今後仍會致力發展新能源,尤其是發展核電廠;如果停止發展石油以外的能源,可能在90年代再次陷入能源危機。從實際來看,前蘇聯核電廠發生事故,對歐洲震動最大,但並沒有影響歐洲各國續建核電站的計劃。例如:聯邦德國反對派要求在10年內取消核電站,但是政府並不放棄繼續新建5個電站的計劃,到1990年,聯邦德國核電站發電能力達2230萬千瓦。

法國也有反核組織,但在民意測驗中,支持興建核電站的佔65%,它將繼續興建17個新的核電站。

前蘇聯計劃的核能曾以特別快的速度發展。根據蘇聯從1986年到2000年的經濟和社會發展的基本方針;蘇聯到1990年生產14800~18800億度電,其中3900億度電來自核電站,約佔20%。同1985年相比,到1990年通過發展核能節約了7500萬~9000萬噸標准燃料;蘇聯解體後,俄羅斯科學家還提出建造地下核電站的方案。

再從日本方面來說,1985年的核發電能力僅為2452萬千瓦,佔全國總發電能力的16%;到20世紀80年代末核發電量達1590億度,佔全國總發電量26%。而其他能源發電量所佔比例是:油佔25%,天然氣佔21%,水力佔14%,煤佔10%,地熱等佔4%。核電占據鰲頭,因此,日本電力工業已開始進入以核電為主力的時代。1992年6月的統計表明;日本運行的核電站有42座,裝機總容量為3000萬千瓦。

日本核電的發展值得我們注意。

日本電力設備的結構,戰前是「水主煤從」,戰後從20世紀60年代初起變成「油主水從、煤從」。20世紀70年代,特別是第一次「石油危機」後,發電用能源向多樣化發展。在這一過程中,同油電在整個發電量中的比重下降成正比,核電飛速增長。

核電在日本所以能夠異軍突起,主要在於核燃料用在發電具有很多優越性。在至今人類能掌握的各種發電能源中,它是最經濟、穩定的高效能源。

日本從1966年建成第一座核電站以來,核電站從未發生過大的事故。

日本的電力公司非常重視普及核電知識的宣傳。在核電站比較集中的地方,都有由他們出資建成的核電展覽館,供市民免費參觀,裡面有反應堆的模型和顯示核發電整個過程的掛圖等。看過之後,因不了解核發電而產生的不安,就會消除。日本人民因受過原子彈傷害,對核問題比較敏感。但是由於認識到核電和核彈的區別,在資源缺乏的日本發展核電有利,因此,並不一般地反對建核電站。就是反對建核電站的部分在野黨,近些年態度也有變化。

1986年7月18日,日本綜合能源調查會的原子能部,提出了對21世紀日本核電遠景的預測報告,根據這一預測,2010年,日本發電用核反應堆將達86座,2030年,將達112座;核發電設備能力,2010年、2030年將分別達到當時的3.5倍、5.5倍。過25~30年左右,日本用的電,每兩度中就有一度是核電。

日本綜合能源調查會是通產大臣的咨詢機關。它的這個預測報告制定於前蘇聯切爾諾貝利核電站事故之後,在制定報告過程中,國際油價已經出現大幅度下降。但是這個報告證明,日本並未因為這兩個因素而動搖今後發展核電的基本方向。

據日本通產省資源能源廳1987年初發表的數字表明,就是在1986年日本核電站的開工率達76.2%,創歷史最高水平。

資源能源廳說,1986年,日本全國運轉中的各種類型的核反應堆共有32座。平均開工率自1982年以來,已連續五年超過70%。這在西方發達國家中也是高水平的。若同1985年統計的開工率相比較,日本的開工率僅次於聯邦德國。

最後,再看一看核發電量最多的美國。

美國開發核電已有悠久的歷史,據美國能源部1986年統計,美國有100座核電站在運行,核電站數量居世界第一位。當時還有27座正在興建中。他們長期以來在開發核電方面積累了豐富的經驗。美國核電站多年的建設和運行經驗證明,核電站事故發生的可能性雖然不能絕對排除,但百分比是微小的。如果在設備和管理方面,嚴格地按照科學規定辦事,事故是可以避免的。

美國核能專家認為,選擇優良的核反應堆堆型是確保核電站安全運行的關鍵。迄今為止,發生嚴重事故並危及人體安全酌,一般都是石墨堆,而壓水堆不容易發生嚴重事故,即使發生事故,由於種種安全措施,放射性物質也不易因外泄而引起對環境的污染和危害人體。

由於經濟需要等方面的原因,美國核電站絕大部分都建在人口稠密的城市附近。但是,因為核電站建造者嚴格遵守核規章委員會制定的安全標准條例,所以核電站從未出現過實際威脅附近城市居民安全的嚴重事故。美國核規章委員會要求核屯站的建造者在提出建造申請時,必須制定相應的安全保障措施。經過核規章委員會嚴格審查認可後,才發放建站許可證。核電站在建造和運行期間,核規章委員會要定期進行檢查,如果發現問題,有權對核電站提出包括停止運行在內的各種要求。

這些,都無疑為世界核電的發展提供了寶貴的經驗。

美國、前蘇聯、歸本及歐洲大部分地區的情況是如此,其他地方的個別國家,雖有點變化也就無關大局了。因此,國際原子能機構1987年2月公布的。數字表明,世界核能發,展總的趨勢沒有受切爾諾貝利事故太大的影響,1986年又有21座核反應堆聯網發電,新增加核發電量2094萬千瓦。

當切爾諾貝利事故煽起世界性的反核浪潮寧息以後,人們能夠比較冷靜地對事件作出公正的評價。1987年初,21國歐洲委員會議會就核安全問題舉行了聽證會。他們拿1986年4月26日切爾諾貝利反應堆發生爆炸和起火,對人的健康造成的已知的和估計會產生的長期影響,與普通電廠同其他輻射源對人們的健康和環境帶來的危險作比較。專家們得出了基本一致的看法,認為盡管發生了這次核事故,利用核燃料發電仍然比利用普通燃料發電要安全得多。

前蘇聯的國家原子能利用委員會副主席說,如果重新用煤和石油等有機燃料來發電,對人們的健康和環境帶來的危險將會大大增加。

設在維也納的國際原子能機構核安全部門的負責人也說:「人們現在已認識到『煤和石油燃燒後產生的物質』對我們的環境是一個重大的威脅」。他提到了一例子,一個發電能力為100萬千瓦的普通電廠在城市居民中引起死亡的人數和生病的人數可以分別達到3~30人和2000~20000人,而一個發電力相仿的核電廠在正常運轉的情況下引起死亡和生病的人數最多分別是一個。

對於核能的安全性已經為國際所公認。

核能的優點是十分鮮明的,其能量密度大,功率高,為其他能源所不及。這就容易使安全裝置集中,提高效率。人們往往忽視,功率小設施就分散,即使微小的危險也隨之分散而導致經常發生大量不被人發覺的各種事故。

在能量儲存方面,核能比太陽能、風能等其他新能源容易儲存,後者常常什麼時候有,什麼時候才能利用,除非安裝儲存緩沖器,但這種裝置目前價格昂貴。核燃料的儲存佔地不大,在核船舶或核潛艇中,也同樣占據不大空間,因為它們兩年才換料一次。相反,燒重油或燒煤設備需龐大的儲存罐或佔地很多。

核電作為一種新興的能源事業,已在世界能源中佔有舉足輕重的地位,但它並非十全十美。正像其他任何先進技術一樣,核電既能造福於人類,也伴有一定的潛在風險。從對核能的指責聲中,我們就聽到了一些對生態環境的影響以及其他疑慮。例如,台灣北部核能一、二廠和南部的核三廠,對沿海漁業就有不小的沖擊;南灣的珊瑚也因受到廢熱水浸害而死亡。

其實,無論是核電站還是火電站,都有餘熱排人環境,因此廢熱對環境的影響並不是核電站獨有的,只是程度上有差別。核電站通過冷卻水排入水中的余熱要比火電站高約35%~50%。

世界上很多國家把核電站建在沿海,利用海水作冷卻水,既可為核電站提供無限的冷卻水,又比河水能更好地消散余熱,減少余熱對環境的影響。為了盡可能減少余熱對天然水域的影響,人們還採取了不少措施,如制定排放標准,限制排放引起的升溫;選擇合適的排放位置及排放方式;提高熱轉換效率;余熱利用等。

日本核電站排水溫度一般高出海水溫度有7~9℃,進入海域後擴散很快,溫度迅速下降,一般在1~2公里外的水表面溫度即降到1~2℃,因此對水資源不會帶來有害影響。據國外報道,多數核電站附近的捕魚量沒有明顯變化,有的地方還有增加。

核電站在投入正常運行時,進入廢氣、廢液和固體廢物中的放射性物質只是極少的一部分。核電站設有完善的三廢處理系統,可對放射性廢物實行有效的處理。在核電站周圍還設置許多監測點,定期採集空氣、水樣、土樣和動植物樣品進行分析,監督放射性物質對環境的污染。放射性物質很難以有害量進入環境。

因此,擔心和憂慮核電站污染環境和破壞生態平衡是不必要的。利用核電站循環水的排水灌溉農田;利用冷卻永的余熱為溫室供熱,培養瓜果和魚類是可以做到的。

最後,從經濟上的未定因素來考慮。一座核電站的服役年齡為30~40年,退役以後,其費用應當計人核發電的成本中去。

現在,世界上第一個投入使用的美國核電站,已經走完30年的運營期而報廢。目前世界上已有或正在興建的500多個反應堆,或早或遲也會走到這一步。美國能源部估計,美國現有16個反應堆將在本世紀末到期,到2005年將有53個反應堆,2010年有70個反應堆到期報廢。現在看來,處理這些反應堆的成本比剛進入核電時代預計的高,報廢日期又比預計日期提前,電站內金屬管件受輻射而變脆的情況比當初估計的嚴重。為此,專家們已開始認真考慮核電站報廢問題,提出了下列幾種處置方案:

(1)封存處理:從反應堆中移走核燃料,並對輻射進行監控。這些措施實行之初十分簡便,但一些專家認為,由於輻射要持續若干世紀,長期持續的警戒和監控,累計成本可能很高,最後還是不得不拆除。

(2)埋葬處理:從反應堆中移走核燃料,加蓋一層厚厚的水泥殼,把整個電站區罩起來。蘇聯切爾諾貝利核電站發生事故後,就是這樣處置的。埋葬具有與封存相同的許多優點,但實施中人員會受不同程度的放射性沾染。

(3)拆除處理:優點是無須背上長期警戒和維護的沉重包袱,而且站區隨即可作他用,包括建設新的核電站。但問題在於對施工人員可能造成嚴重的輻射沾染,且拆除成本高。

美國希平波特核電站,成了第一個進行拆除處理方法的試驗場。

因此,今後核能工業的發展,我們仍然應該謹慎地先建立核能工業發展的評估制度和嚴密的管理措施,這樣才能使核工業健康發展而免蹈某些國家先行中所犯錯誤的覆轍。

世界核電工業之所以發展迅速,主要因為它具有較強的經濟競爭力、環境污染較小、燃料豐富三個優點。在權衡利弊時,從現代的觀點來看,無論如何,利還是大於弊。

目前,人類對核燃料即鈾資源的勘探工作還十分有限。但是根據已經發現的天然鈾礦,如果用於核發電,足可以使用幾千年。

1986年的另一項重要科技成就是,日本金屬礦業團在瀨戶內海的秀川縣成功地建造了世界上第一座用海水提鈾的工廠,這座於4月下旬投產的提鈾廠年產10噸鈾。海水提鈾的工業化,為人類開發海水中數十億噸鈾儲量邁出了可貴的第一步。

如果將這項儲量考慮在內,那麼,廣闊的海洋幾乎成為核燃料取之不盡的寶藏。

1686年,是核工業有沉痛教訓的一年,也是獲得很大成就的一年。

自核電站問世以來,由於工程技術的不斷改善使核電站的運行性能不斷提高,運行的安全可靠性日趨完善,事故發生率也在下降。這就使得核電站的時間利用率和負荷明顯提高,進一步顯示了核電站的經濟效益和它在各類發電系統中的競爭能力。

誠然,核電技術的先進性和可靠性是確保安全的重要因素,但實行嚴格的科學管理同樣也是確保安全的重要因素,這是人們從這場切爾諾貝利核事故中應該吸取的嚴重教訓。

安全設備的日趨復雜化,促使我們必須把希望寄託在一系列復雜設備運行的安全無誤上。那麼能不能建造出包含內在安全因素的核反應堆呢?回答應該是肯定的。

瑞典研製成功的「內在過程絕對安全」反應堆就是具有代表性的新型反應堆。它的設計思想是:即使初級冷卻系統失靈,堆芯仍能冷卻下來。內在安全能保證不用復雜的安全設備,反應堆仍然能安全運轉。

核電站的充分安全問題並非是不能解決的。

不可否認,切爾諾貝利事故對核電發展帶來某些消極作用。然而,這並不能否定核電的優點。回顧核電的發展史,尤其是從世界性能源發展的長遠觀點看,核電站的發展前景是美好的。隨著工程技術和管理水平的不斷改善,必將給核電工業帶來新的生機。

我們不妨再就日本的情況來說,這個國家非但沒有停止發展核電,而且還著手制定了面向21世紀的核電長期戰略計劃,並以每年投產兩座核反應堆的速度增建新的核電站。原因就在於日本已擁有一整套安全防護對策。

日本的安全對策是在「沒有安全也就沒有原子能利用」的前提下,從原子能發電設備的多重保護設計、國家制定嚴格的發展原子能發電的安全規則、原子能發電企業採取萬全的運營措施、提高操作人員的素質、減少人為的失誤、加強地方居民對核電站安全運轉的監督和關注為內容,構成一套完整的安全防護體系。

日本在技術上把核反應堆運轉過程中在堆內產生和積存的放射性物質全部密封起來,以免有害氣體外泄。即使在運轉過程中發生事故,也能把放射性物質封閉起來而不影響周圍居民的安全。

他們實施多重防護主要包括:

(1)防止發生異常的對策:要求核發電系統在設計上必須留有足夠的安全系數,選用的設備和材料必須保證質量,對施工質量也要有嚴格的要求和驗收,發電系統中還配有在部分機器出現異常時能自動確保安全的「安全系統」,和一旦出現操作失誤能確保整個系統安全的「連鎖裝置系統」。對投入運轉後的核反應堆和渦輪機實施嚴格的定期檢查。

(2)防止異常事故擴大對策:主要是在設計上配有一套能夠自動檢測,早期發現多種異常並使核反應堆緊急停止,自動消除余熱的系統。

(3)防止放射性物質泄出的對策:配有一套出現異常時使用的反應堆堆芯冷卻裝置,它由高壓注人裝置、低壓注入裝置、反應堆堆芯噴霧器等系統構成。

日本政府不但訂有各種核發電安全對策的規章制度,而且對核電站從設計、興建到投產後的安全運轉都實施積極的監督和干預。設計階段,通產省首先聽取各方專家對所設計核反應堆的安全性進行充分論證,然後由通產大臣發放准許製造的許可證。建設階段,在對工程設計、施工方法和內容進行認真的審查之後,由通產省授予准建權。一個核電站竣工而未投入運轉之前,通產省將對它進行嚴格的驗收。

此外,對管理操作人員也進行嚴格的挑選和訓練。新人進站後,首先要在有經驗的操作員的指導和監督下見習一年,然後到操作訓練中心參加標准訓練課程的學習,才可擔任輔機操作員。工作五至六年後,輔機操作員才能作為主機操作員走上關鍵技術崗位。具有六至七年主機操作員經歷,並通過了國家考試者,才有資格被選拔為運轉負責人。此外,主機操作員每三年需接受一次運轉訓練中心的模擬訓練,輔機操作員每年需接受三次模擬訓練。

為加強核安全的研究,完善核安全對策,日本科學技術廳決定,在核安全委員會內設立核事故分析專門機構。

核事故分析專門機構的任務是,研究如何從組織上保障核設施的安全,經常重新估價安全措施的可靠性,以防止重大事故發生。此外,這個專門機構還要制定緊急情況下的人員撤離方案,對引起事故的錯誤操作原因進行綜合研究。

為加強核安全管理和防範措施,日本科技廳要設立兩個咨詢系統,一個是國外核事故可能造成對日本污染的預測預報系統;另一個是能夠在核事故發生後及時提供切實可行措施的緊急技術建議系統。

預測預報系統以氣象數據為依據,要能測出距日本2000~3000公里以內地區的核輻射劑量。緊急技術建議系統要掌握國內所有核成套設備的管道線路圖和其他數據,在非常情況下根據這些數據,及時提出如何防止事故擴大及減少放射性污染等技術性建議。

日本科技廳認為,這些機構雖然是一種咨詢性質的機構,但是他們可以協助核安全委員會,迅速地為國家制定有效的應急對策。

前蘇聯切爾諾貝利核電站發生事故後,日本更加清醒地認識到進一步強化安全對策的重要性。他們進一步充實完善國家有關發展核電的各種規章制度,使核電技術標准更加完善。國家對核電站實行有效的監督、管理,制定新的核反應堆的投產、廢棄的規定與措施,制定與核燃料循環相應的技術標准。國家還建立專門的機構使安全檢查制度化。加強核電企業的管理機能,把確保安全作為企業經營最重要的一環。

日本還開展「官、民、學」三位一體的研究體制,積極推進新的核發電技術和安全防護技術的研究,要做到防患於未然。同時還考慮應急狀態下的防護措施,如發展專用機器人。

日本能做到的事情,別的國家也可以去做。核技術終將會成為一門可以使人完全放心的安全技術。

前蘇聯切爾諾貝利核事故這種壞事正在被各國認真總結教訓,逐漸轉變為推動本國核電事業健康發展的好事。他們完善了各種有關核能的法規,規定了核能委員會的職能、核能使用部門的職能和監督機構的職能。

在核能領域,由於切爾諾貝利的震動,1986年成了十分活躍的一年,我們國家還派出記者特意對西歐的核電部門進行考察訪問。由於聯邦德國核電事業無論在經濟技術方面還是設備安全、管理嚴格方面均堪稱楷模,記者對聯邦德國核電事業作了一番巡禮,向中國讀者提供了許多可作形象思維的感性材料。

對前聯邦德國來說,「除了核電之外,沒有別的選擇」。

從前聯邦德國的經驗來看,核電除了清潔價廉之外,還有兩個被我們曾經忽視的好處:一是推動高技術工業發展,帶動相關部門同步發展;二是鍛煉一支高水平的科研和建設隊伍。以生產電力的多寡和運轉率為標准,世界前七位核電站全部在前聯邦德國。前聯邦德國核電站以其經濟效益高、設備可靠和人員專業化程度高著稱於世。

前聯邦德國的核電事業為人們展示了一個十分可信的現實,事實勝於雄辯;核能的高效及安全,只要人們嚴肅認真地對待,是可以做到的,是切實可行的。

目前,國際上核電站設計專家為提高核電站的安全系數進行了深入的調查研究。研究方向大體有兩個,一是探討地下核電站的可行性,二是增補地上核電站的保安措施,尤其是對意外險情的防範措施。研究的結果無疑將導致出現更安全的核電站。

對地上核電站安全運營問題的研究,得出了所謂綜合保安的設想,並具體化為一些新的設計與運營規則。這些新規則要求,核電站設計者在設計時和操作員在值班時,均應考慮和分析可能導致事故的某些意外情況。現有核電站有一套對付反應堆發生設想有可能發生的故障的技術手段,但是過去美蘇核電站事故表明,核電站在運營中會出現一些意想不到的情況,所以新規則要求核電站的設計中要有能夠幫助操作員,在出觀意外險情時及時排除險情的技術裝置。

新規則的另一個重要部分是所謂「雙防系統」。現有的核電站都有一個鋼筋混凝土防護罩,旨在防止反應堆出故障時其放射性物質逸出而危害附近的人畜和環境。但已發生的核電站事故表明,單有這種防護罩還不行。一旦出現未預料到的情況而罩內壓力猛升至5個大氣壓以上,罩本身就可能失去密封性甚至被脹破(爆炸)。新規則要求核電站附設一套可確保操作員使罩內壓力及時降至通常水平的技術設備,必要時操作員還可以啟動防輻射的過濾裝置。這就是新規則所說的「雙防系統」。

地下核電站的必要性和可行性問題,已被認定,它比地上核電站更為安全,並且經濟和技術上都是可行的。前蘇聯的核反應堆的防護罩只有1.6米厚,反應堆內的熔融核燃料一旦逸出而壓到罩壁上,不到1小時就會把罩燒毀。在新的「核電站-88」設計中,防護罩也只能耐受4.6個大氣壓的內部壓力,電纜、管道等也只能耐受8個大氣壓,而在反應堆核燃料熔融事故中蒸汽與氫的爆炸會產生高達13~15個大氣壓的壓力。所以,在未能設計出「絕對安全的反應堆」之前,應將核電站建在地下。目前所說的地下核電站,是把反應堆和控制系統建在石質或半石質地層中的中小型核電站。

據分析,這種地下核電站至少可保證運營中不危害周圍環境,不發生切爾諾貝利核電站那種浩劫式的事故後果,而且便於封存壽終正寢的反應堆,減輕地震對核電站的影響。此外,把核電站轉入地下還可以使核電站的建設得以在現有技術水平上得到發展,而無須等到「絕對安全」的核電站設計問世之後再發展核屯事業。進一步的分析表明,把4個機組的100萬千瓦核電站反應堆和控制系統建在50米深的地下,建築費用只、增加11%~15%,但如果把關閉核電站所需費用算進去,那麼地下核電站的造價比地上核電站還要低一些。拿2個機組的50萬千瓦供熱核電站來說,將反應堆設在地下的建築費用比地上同類核電站多20%~30%,如把關閉核電站所需費用打進去,則只多4%~11%。

1995年底時全球運營中的核電站為437個。

正在運行中的核電站,規模上美國居首位,其次為法國、日本、德國、俄羅斯、加拿大。法國核電佔法國電力總量的78.2%,核電開發幾乎達到極限。

國際上的分析家早於1993年5月作了預測,認為以後10年內亞洲對核電的需求將激增。

核能開發是世界各國21世紀能源戰略的發展重點。

核電這門現代高技術產業正以它強大的生命力,克服它前進道路上的種種障礙,茁壯成長,日趨成熟。

❻ 今年的日本大地震,核泄漏成為世界關注焦點,核能源是第幾次科技革命中開發利用的

第3次科技革命中開發利用
能是人類歷史上的一項偉大發明,同時也可以叫它為原子能。這離不開早期西方科學家的探索發現,他們為核能的應用奠定了基礎。1902年 居里夫人經過4年的艱苦努力發現了放射性元素釙和鐳。1905年愛因斯坦提出質能轉換公式。20多年以後德國科學家奧托哈恩用中子轟擊鈾原子核,發現了核裂變現象,核能源開始進入資本主義國家的軍事領域。
在1945年之前,人類在能源利用領域只涉及到物理變化和化學變化。二戰時,原子彈誕生了。人類開始將核能運用於軍事、能源、工業、航天等領域。美國、俄羅斯、英國、法國、中國、日本、以色列等國相繼展開對核能應用前景的研究。

日本多少天能製造出核武器日本擁有多少核材料

  1. 一般估計,日本研製出核武器到投入使用大約為6個月到1年時間。日本的核彈設計者完全可以在時間限度內拿出一個初級核爆炸裝置,不過作為准備在戰場上使用的核武器,還有很長的一段距離。早在1995年,日本《寶石》雜志就披露,日本能在183天內製造出原子彈。

  2. 據報道,日本一直借核電公開囤積核原料。上世紀90年代末,迫於國際社會的壓力和國民的反對,日本政府無法大量生產或進口鈈元素,於是想出變通的辦法:以能源再利用為名,將國內核電站用過的核廢料運往西歐,經處理後提取高純度鈈,同時「夾帶」更多的鈈元素回國。1999年到2005年,日本每年從西歐運回約900千克鈈,遠超核廢料再處理回收的量。如果把這900千克鈈全部用來製造核彈的話,可年產60枚核彈。據美國專家估算,日本目前已經成為全球最大的武器級鈈持有國,其鈈元素儲量已經超過美國核武庫中100噸的數量,可生產上萬枚核彈,還在以每年5噸左右的速度遞增。

❽ 二十世紀,日本核電的發展是什麼樣的

日本電力設備的結構,戰前是「水主煤從」,戰後從20世紀60年代初起變成「油主水從、煤從」。20世紀70年代,特別是第一次「石油危機」後,發電用能源向多樣化發展。在這一過程中,同油電在整個發電量中的比重下降成正比,核電飛速增長。

核電在日本所以能夠異軍突起,主要在於核燃料用在發電具有很多優越性。在至今人類能掌握的各種發電能源中,它是最經濟、穩定的高效能源。

熱點內容
西班牙8號球員有哪些 發布:2023-08-31 22:08:22 瀏覽:1277
怎麼買日本衣服 發布:2023-08-31 22:08:20 瀏覽:620
紐西蘭有哪些人文景點 發布:2023-08-31 22:06:06 瀏覽:737
皇馬西班牙人哪個台播 發布:2023-08-31 22:05:05 瀏覽:1190
新加坡船廠焊工工資待遇多少一個月 發布:2023-08-31 22:01:05 瀏覽:1248
緬甸紅糖多少錢一斤真實 發布:2023-08-31 21:57:45 瀏覽:902
緬甸200萬可以換多少人民幣 發布:2023-08-31 21:57:39 瀏覽:854
紐西蘭跟中國的時差是多少 發布:2023-08-31 21:53:49 瀏覽:1542
中國哪個地方同時與寮國緬甸接壤 發布:2023-08-31 21:52:06 瀏覽:875
土耳其簽證選哪個國家 發布:2023-08-31 21:37:38 瀏覽:650