日本什么时候开始利用核能源
❶ 日本国大力发展核电站的理由是什么
1)、.群岛国家,国土面积狭小,常规能源缺乏
2)、.人口稠密、经济发达,能源需求量大3)、.日本科技力量雄厚4)、.核能能量密集,地区适应性强5)、.核电站需水量大,岛国四面临海,便于取用冷却水和排放废热水 核电站就是利用一座或若干座动力反应堆所产生的热能来发电或发电兼供热的动力设施。核电站与常规火电站相比,有很多优点:
1.核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。
2.核能发电不会产生加重地球温室效应的二氧化碳。
3.核能发电所使用的铀燃料,除了发电外,没有其他的用途。
4.核燃料能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。
5.核能发电的成本中,燃料费用所占的比例较低,核能发电的成本较不易受到国际经济情势影响,故发电成本较其他发电方法为稳定。
日本国土范围小,土地有限,化石燃料主要依靠进口,来源不稳定且费用高昂,.核能发电能有效解决问题且日本有相关科学技术。
❷ 核能是什么时候开始被使用的
1945年8月6日。美国在日本的广岛投下了一枚代号为“小男孩”的原子弹,这是人类对核能的第一次利用。从此人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开核能应用研究。
❸ 二十世纪,日本核电站的发展情况是什么样的
1986年7月18日,日本综合能源调查会的原子能部,提出了对21世纪日本核电远景的预测报告,根据这一预测,2010年,日本发电用核反应堆将达86座,2030年,将达112座;核发电设备能力,2010年、2030年将分别达到当时的3.5倍、5.5倍。过25~30年左右,
日本用的电,每两度中就有一度是核电。
日本综合能源调查会是通产大臣的咨询机关。它的这个预测报告制定于前苏联切尔诺贝利核电站事故之后,在制定报告过程中,国际油价已经出现大幅度下降。但是这个报告证明,日本并未因为这两个因素而动摇今后发展核电的基本方向。
据日本通产省资源能源厅1987年初发表的数字表明,就是在1986年日本核电站的开工率达76.2%,创历史最高水平。
资源能源厅说,1986年,日本全国运转中的各种类型的核反应堆共有32座。平均开工率自1982年以来,已连续五年超过70%。这在西方发达国家中也是高水平的。若同1985年统计的开工率相比较,日本的开工率仅次于联邦德国。
❹ 最先有造核武器,理论的国家是日本吗
核.武.器的出现,是20世纪40年代前后科学技术重大发展的结果。1939年初,德国化学家O.哈恩和物理化学家F.斯特拉斯曼发表了铀原子核裂变现象的论文。几个星期内,许多国.家的科学家验证了这一发现,并进一步提出有可能创造这种裂变反应自持进行的条件,从而开辟了利.用这一新能源为人类创造财富的广阔前景。但是,同历.史上许多科学技术新发现一样,核能的开发也被首先用于军事目的,即制.造威力巨大的原子弹,其进程受到当时社.会与政.治条件的影响和制约。从1939年起,由于法.西.斯德国扩大侵略战争,欧洲许多国.家开展科研工作日益困难。同年9月初,丹麦物理学家N.H.D.玻尔和他的合作者J.A.惠勒从理论上阐述了核裂变反应过程,并指出能引起这一反应的最好元素是同位素铀235。正当这一有指导意义的研究成果发表时,英、法两国向德国宣战。1940年夏,德军占领法国。法国物理学家J-F约里奥-居里领.导的一部分科学家被.迫移居国外。英国曾制订计划进行这一领域的研究,但由于战争影响,人力物力短缺,后来也只能采取与美国合作的办法,派出以物理学家J·乍得威克为首的科学家小组,赴美国参加由理论物理学家J.R.奥本海默领.导的原子弹研制工作。
在美国,从欧洲迁来的匈牙利物理学家齐拉德·莱奥首先考虑到,一旦法.西.斯德国掌握原子弹技术可能带来严重后果。经他和另几位从欧洲移居美国的科学家奔走推动,于1939年8月由物理学家A·爱因斯坦写信给美国第32届总统F.D.罗斯福,建议研制原子弹,才引起美国政.府的注意。但开始只拨给经费6000美元,直到1941年12月日本袭.击珍珠港后,才扩大规模,到1942年8月发展成代号为“曼哈顿工程区”的庞大计划,直接动用的人力约60万.人,投资20多亿美元。到第二次世界大战即将结束时制成3颗原子弹,使美国成为第一个拥有原子弹的国.家。制.造原子弹,既要解决武.器研制中的一系列科学技术问题,还要能生产出必需的核装料铀235、钚239。天然铀中同位素铀235的丰度仅0.72%,按原子弹设计要求必须提高到90%以上。当时美国经过多种途径探索研究与比较后,采取了电磁分离、气体扩散和热扩散三种方法生产这种高浓铀。供一颗“枪法”原子弹用的几十千克高浓铀,是靠电磁分离法生产的。建设电磁分离工厂的费用约3亿美元(磁铁的导电线圈是用从国库借来的白银制.造的,其价值尚未计入)。钚239要在反应堆内用中子辐照铀238的方法.制取。供两颗“内爆法”原子弹用的几十千克钚239,是用3座石墨慢化、水冷却型天然铀反应堆及与之配套的化学分离工厂生产的。以上事例可以说明当时的工程规模。由于美国的工业技术设施与建设未受到战争的直接威胁,又掌握了必需的资源,集中了一批西方国.家最好的科技人才,使它能够较快地实现原子弹研制计划。
德国的科学技术,当时本处于领先地位。1942年以前,德国在核技术领域的水平与美、英大致相当,但后来落伍了。美国的第一座试验性石墨反应堆,在物理学家E.费密领.导下,1942年12月建成并达到临界;而德国采用的是重水反应堆,生产钚239,到1945年初才建成一座不大的次临界装置。为生产高浓铀,德国曾着重于高速离心机的研制,由于空袭和电力、物资缺乏等原因,进展很缓慢。其次,A.希.特.勒迫.害科学家,以及有的科学家持不合作态度,是这方面工作进展不快的另一原因。更主要的是,德国.法.西.斯头.目过分自信,认为战争可以很快结束,不需要花气力去研制尚无必成把握的原子弹,先是不予支持,后来再抓已困难重重,研制工作终于失败。
1945年5月德国投降后,美国有不少知道“曼哈顿工程”内.幕的人.士,包括以物理学家J.弗兰克为首的一大批从事这一工作的科学家,反.对用原子弹轰炸日本城市。当时,中.国开始对日本进行反击。美国在太平洋地区的进攻,几乎全部摧毁日本海军,海上封.锁使日本国内的物资供应极为匮泛。二战通.过硫磺岛一战,丘吉尔估计要彻底打垮日本,在日本本土登陆,至少还要付出100万美军和50万英军的生命。
这样沉重的包袱美国背不起。也不想背,用原子弹是最好的方式。美国在日本的广岛和长崎投下了仅有的两颗原子弹,代号分别为“小男孩”和“胖子”。(史料记载,这场人类有史以来的巨大灾.难,造成了30万余日本平民死亡和8万多人受伤。原子弹的空前杀伤和破.坏威力,震.惊了世界,也使人们对以利.用原子核的裂变或聚变的巨大爆.炸力而制.造的新式武.器有了新的认识。
苏联在1941年6.月遭受德军入侵前,也进行过研制原子弹的工作。铀原子核的自发裂变,是在这一时期内由苏联物理学家Н.弗廖罗夫和Κ.А.佩特扎克发现的。卫国战争爆发后,研制工作被.迫中断,直到1943年初才在物理学家И。В.库尔恰托夫的组.织领.导下逐渐恢复,并在战后加速进行。1949年8月,苏联进行了原子弹试验。1950年1月,美国总统H.S.杜鲁门下令加速研制氢弹。1953年8月,苏联进行了以固态氘化锂6为热核燃料的氢弹试验,使氢弹的实用成为可能。美国于1954年2月进行了类似的氢弹试验。英国、法国先后在50和60年代也各自进行了原子弹与氢弹试验。中.国在开始全面建设社.会主.义时期,基础工业有了一定的发展,即着手准备研制原子弹。1959年开始起步时,国.民经济发生严重困难。同年6.月,苏联政.府撕毁中苏在1957年10月签订的关于国防新技术协定,随后撤走专.家,中.国决心完全依靠自己的力量来实现这一任务。中.国首次试验的原子弹取"596"为代号,就是以此激励全国军民大力协同做好这项工作。19⑥4年10月16日,首次原子弹试验成功。经过两年多,1966年12月28日,小当量的氢弹原理试验成功;半年之后,于1967年6.月17日成功地进行了百万吨级的氢弹空投试验。中.国坚持独.立自主、自力更生的方针,在世界上以最快的速度完成了核.武.器这两个发展阶段的任务。
❺ 核电的发展过程是怎样的
1986年10月,总部均设在巴黎的国际能源局和经合组织属下的核能源局,分别发表报告,指出整个西欧今后仍会致力发展新能源,尤其是发展核电厂;如果停止发展石油以外的能源,可能在90年代再次陷入能源危机。从实际来看,前苏联核电厂发生事故,对欧洲震动最大,但并没有影响欧洲各国续建核电站的计划。例如:联邦德国反对派要求在10年内取消核电站,但是政府并不放弃继续新建5个电站的计划,到1990年,联邦德国核电站发电能力达2230万千瓦。
法国也有反核组织,但在民意测验中,支持兴建核电站的占65%,它将继续兴建17个新的核电站。
前苏联计划的核能曾以特别快的速度发展。根据苏联从1986年到2000年的经济和社会发展的基本方针;苏联到1990年生产14800~18800亿度电,其中3900亿度电来自核电站,约占20%。同1985年相比,到1990年通过发展核能节约了7500万~9000万吨标准燃料;苏联解体后,俄罗斯科学家还提出建造地下核电站的方案。
再从日本方面来说,1985年的核发电能力仅为2452万千瓦,占全国总发电能力的16%;到20世纪80年代末核发电量达1590亿度,占全国总发电量26%。而其他能源发电量所占比例是:油占25%,天然气占21%,水力占14%,煤占10%,地热等占4%。核电占据鳌头,因此,日本电力工业已开始进入以核电为主力的时代。1992年6月的统计表明;日本运行的核电站有42座,装机总容量为3000万千瓦。
日本核电的发展值得我们注意。
日本电力设备的结构,战前是“水主煤从”,战后从20世纪60年代初起变成“油主水从、煤从”。20世纪70年代,特别是第一次“石油危机”后,发电用能源向多样化发展。在这一过程中,同油电在整个发电量中的比重下降成正比,核电飞速增长。
核电在日本所以能够异军突起,主要在于核燃料用在发电具有很多优越性。在至今人类能掌握的各种发电能源中,它是最经济、稳定的高效能源。
日本从1966年建成第一座核电站以来,核电站从未发生过大的事故。
日本的电力公司非常重视普及核电知识的宣传。在核电站比较集中的地方,都有由他们出资建成的核电展览馆,供市民免费参观,里面有反应堆的模型和显示核发电整个过程的挂图等。看过之后,因不了解核发电而产生的不安,就会消除。日本人民因受过原子弹伤害,对核问题比较敏感。但是由于认识到核电和核弹的区别,在资源缺乏的日本发展核电有利,因此,并不一般地反对建核电站。就是反对建核电站的部分在野党,近些年态度也有变化。
1986年7月18日,日本综合能源调查会的原子能部,提出了对21世纪日本核电远景的预测报告,根据这一预测,2010年,日本发电用核反应堆将达86座,2030年,将达112座;核发电设备能力,2010年、2030年将分别达到当时的3.5倍、5.5倍。过25~30年左右,日本用的电,每两度中就有一度是核电。
日本综合能源调查会是通产大臣的咨询机关。它的这个预测报告制定于前苏联切尔诺贝利核电站事故之后,在制定报告过程中,国际油价已经出现大幅度下降。但是这个报告证明,日本并未因为这两个因素而动摇今后发展核电的基本方向。
据日本通产省资源能源厅1987年初发表的数字表明,就是在1986年日本核电站的开工率达76.2%,创历史最高水平。
资源能源厅说,1986年,日本全国运转中的各种类型的核反应堆共有32座。平均开工率自1982年以来,已连续五年超过70%。这在西方发达国家中也是高水平的。若同1985年统计的开工率相比较,日本的开工率仅次于联邦德国。
最后,再看一看核发电量最多的美国。
美国开发核电已有悠久的历史,据美国能源部1986年统计,美国有100座核电站在运行,核电站数量居世界第一位。当时还有27座正在兴建中。他们长期以来在开发核电方面积累了丰富的经验。美国核电站多年的建设和运行经验证明,核电站事故发生的可能性虽然不能绝对排除,但百分比是微小的。如果在设备和管理方面,严格地按照科学规定办事,事故是可以避免的。
美国核能专家认为,选择优良的核反应堆堆型是确保核电站安全运行的关键。迄今为止,发生严重事故并危及人体安全酌,一般都是石墨堆,而压水堆不容易发生严重事故,即使发生事故,由于种种安全措施,放射性物质也不易因外泄而引起对环境的污染和危害人体。
由于经济需要等方面的原因,美国核电站绝大部分都建在人口稠密的城市附近。但是,因为核电站建造者严格遵守核规章委员会制定的安全标准条例,所以核电站从未出现过实际威胁附近城市居民安全的严重事故。美国核规章委员会要求核屯站的建造者在提出建造申请时,必须制定相应的安全保障措施。经过核规章委员会严格审查认可后,才发放建站许可证。核电站在建造和运行期间,核规章委员会要定期进行检查,如果发现问题,有权对核电站提出包括停止运行在内的各种要求。
这些,都无疑为世界核电的发展提供了宝贵的经验。
美国、前苏联、归本及欧洲大部分地区的情况是如此,其他地方的个别国家,虽有点变化也就无关大局了。因此,国际原子能机构1987年2月公布的。数字表明,世界核能发,展总的趋势没有受切尔诺贝利事故太大的影响,1986年又有21座核反应堆联网发电,新增加核发电量2094万千瓦。
当切尔诺贝利事故煽起世界性的反核浪潮宁息以后,人们能够比较冷静地对事件作出公正的评价。1987年初,21国欧洲委员会议会就核安全问题举行了听证会。他们拿1986年4月26日切尔诺贝利反应堆发生爆炸和起火,对人的健康造成的已知的和估计会产生的长期影响,与普通电厂同其他辐射源对人们的健康和环境带来的危险作比较。专家们得出了基本一致的看法,认为尽管发生了这次核事故,利用核燃料发电仍然比利用普通燃料发电要安全得多。
前苏联的国家原子能利用委员会副主席说,如果重新用煤和石油等有机燃料来发电,对人们的健康和环境带来的危险将会大大增加。
设在维也纳的国际原子能机构核安全部门的负责人也说:“人们现在已认识到‘煤和石油燃烧后产生的物质’对我们的环境是一个重大的威胁”。他提到了一例子,一个发电能力为100万千瓦的普通电厂在城市居民中引起死亡的人数和生病的人数可以分别达到3~30人和2000~20000人,而一个发电力相仿的核电厂在正常运转的情况下引起死亡和生病的人数最多分别是一个。
对于核能的安全性已经为国际所公认。
核能的优点是十分鲜明的,其能量密度大,功率高,为其他能源所不及。这就容易使安全装置集中,提高效率。人们往往忽视,功率小设施就分散,即使微小的危险也随之分散而导致经常发生大量不被人发觉的各种事故。
在能量储存方面,核能比太阳能、风能等其他新能源容易储存,后者常常什么时候有,什么时候才能利用,除非安装储存缓冲器,但这种装置目前价格昂贵。核燃料的储存占地不大,在核船舶或核潜艇中,也同样占据不大空间,因为它们两年才换料一次。相反,烧重油或烧煤设备需庞大的储存罐或占地很多。
核电作为一种新兴的能源事业,已在世界能源中占有举足轻重的地位,但它并非十全十美。正像其他任何先进技术一样,核电既能造福于人类,也伴有一定的潜在风险。从对核能的指责声中,我们就听到了一些对生态环境的影响以及其他疑虑。例如,台湾北部核能一、二厂和南部的核三厂,对沿海渔业就有不小的冲击;南湾的珊瑚也因受到废热水浸害而死亡。
其实,无论是核电站还是火电站,都有余热排人环境,因此废热对环境的影响并不是核电站独有的,只是程度上有差别。核电站通过冷却水排入水中的余热要比火电站高约35%~50%。
世界上很多国家把核电站建在沿海,利用海水作冷却水,既可为核电站提供无限的冷却水,又比河水能更好地消散余热,减少余热对环境的影响。为了尽可能减少余热对天然水域的影响,人们还采取了不少措施,如制定排放标准,限制排放引起的升温;选择合适的排放位置及排放方式;提高热转换效率;余热利用等。
日本核电站排水温度一般高出海水温度有7~9℃,进入海域后扩散很快,温度迅速下降,一般在1~2公里外的水表面温度即降到1~2℃,因此对水资源不会带来有害影响。据国外报道,多数核电站附近的捕鱼量没有明显变化,有的地方还有增加。
核电站在投入正常运行时,进入废气、废液和固体废物中的放射性物质只是极少的一部分。核电站设有完善的三废处理系统,可对放射性废物实行有效的处理。在核电站周围还设置许多监测点,定期采集空气、水样、土样和动植物样品进行分析,监督放射性物质对环境的污染。放射性物质很难以有害量进入环境。
因此,担心和忧虑核电站污染环境和破坏生态平衡是不必要的。利用核电站循环水的排水灌溉农田;利用冷却永的余热为温室供热,培养瓜果和鱼类是可以做到的。
最后,从经济上的未定因素来考虑。一座核电站的服役年龄为30~40年,退役以后,其费用应当计人核发电的成本中去。
现在,世界上第一个投入使用的美国核电站,已经走完30年的运营期而报废。目前世界上已有或正在兴建的500多个反应堆,或早或迟也会走到这一步。美国能源部估计,美国现有16个反应堆将在本世纪末到期,到2005年将有53个反应堆,2010年有70个反应堆到期报废。现在看来,处理这些反应堆的成本比刚进入核电时代预计的高,报废日期又比预计日期提前,电站内金属管件受辐射而变脆的情况比当初估计的严重。为此,专家们已开始认真考虑核电站报废问题,提出了下列几种处置方案:
(1)封存处理:从反应堆中移走核燃料,并对辐射进行监控。这些措施实行之初十分简便,但一些专家认为,由于辐射要持续若干世纪,长期持续的警戒和监控,累计成本可能很高,最后还是不得不拆除。
(2)埋葬处理:从反应堆中移走核燃料,加盖一层厚厚的水泥壳,把整个电站区罩起来。苏联切尔诺贝利核电站发生事故后,就是这样处置的。埋葬具有与封存相同的许多优点,但实施中人员会受不同程度的放射性沾染。
(3)拆除处理:优点是无须背上长期警戒和维护的沉重包袱,而且站区随即可作他用,包括建设新的核电站。但问题在于对施工人员可能造成严重的辐射沾染,且拆除成本高。
美国希平波特核电站,成了第一个进行拆除处理方法的试验场。
因此,今后核能工业的发展,我们仍然应该谨慎地先建立核能工业发展的评估制度和严密的管理措施,这样才能使核工业健康发展而免蹈某些国家先行中所犯错误的覆辙。
世界核电工业之所以发展迅速,主要因为它具有较强的经济竞争力、环境污染较小、燃料丰富三个优点。在权衡利弊时,从现代的观点来看,无论如何,利还是大于弊。
目前,人类对核燃料即铀资源的勘探工作还十分有限。但是根据已经发现的天然铀矿,如果用于核发电,足可以使用几千年。
1986年的另一项重要科技成就是,日本金属矿业团在濑户内海的秀川县成功地建造了世界上第一座用海水提铀的工厂,这座于4月下旬投产的提铀厂年产10吨铀。海水提铀的工业化,为人类开发海水中数十亿吨铀储量迈出了可贵的第一步。
如果将这项储量考虑在内,那么,广阔的海洋几乎成为核燃料取之不尽的宝藏。
1686年,是核工业有沉痛教训的一年,也是获得很大成就的一年。
自核电站问世以来,由于工程技术的不断改善使核电站的运行性能不断提高,运行的安全可靠性日趋完善,事故发生率也在下降。这就使得核电站的时间利用率和负荷明显提高,进一步显示了核电站的经济效益和它在各类发电系统中的竞争能力。
诚然,核电技术的先进性和可靠性是确保安全的重要因素,但实行严格的科学管理同样也是确保安全的重要因素,这是人们从这场切尔诺贝利核事故中应该吸取的严重教训。
安全设备的日趋复杂化,促使我们必须把希望寄托在一系列复杂设备运行的安全无误上。那么能不能建造出包含内在安全因素的核反应堆呢?回答应该是肯定的。
瑞典研制成功的“内在过程绝对安全”反应堆就是具有代表性的新型反应堆。它的设计思想是:即使初级冷却系统失灵,堆芯仍能冷却下来。内在安全能保证不用复杂的安全设备,反应堆仍然能安全运转。
核电站的充分安全问题并非是不能解决的。
不可否认,切尔诺贝利事故对核电发展带来某些消极作用。然而,这并不能否定核电的优点。回顾核电的发展史,尤其是从世界性能源发展的长远观点看,核电站的发展前景是美好的。随着工程技术和管理水平的不断改善,必将给核电工业带来新的生机。
我们不妨再就日本的情况来说,这个国家非但没有停止发展核电,而且还着手制定了面向21世纪的核电长期战略计划,并以每年投产两座核反应堆的速度增建新的核电站。原因就在于日本已拥有一整套安全防护对策。
日本的安全对策是在“没有安全也就没有原子能利用”的前提下,从原子能发电设备的多重保护设计、国家制定严格的发展原子能发电的安全规则、原子能发电企业采取万全的运营措施、提高操作人员的素质、减少人为的失误、加强地方居民对核电站安全运转的监督和关注为内容,构成一套完整的安全防护体系。
日本在技术上把核反应堆运转过程中在堆内产生和积存的放射性物质全部密封起来,以免有害气体外泄。即使在运转过程中发生事故,也能把放射性物质封闭起来而不影响周围居民的安全。
他们实施多重防护主要包括:
(1)防止发生异常的对策:要求核发电系统在设计上必须留有足够的安全系数,选用的设备和材料必须保证质量,对施工质量也要有严格的要求和验收,发电系统中还配有在部分机器出现异常时能自动确保安全的“安全系统”,和一旦出现操作失误能确保整个系统安全的“连锁装置系统”。对投入运转后的核反应堆和涡轮机实施严格的定期检查。
(2)防止异常事故扩大对策:主要是在设计上配有一套能够自动检测,早期发现多种异常并使核反应堆紧急停止,自动消除余热的系统。
(3)防止放射性物质泄出的对策:配有一套出现异常时使用的反应堆堆芯冷却装置,它由高压注人装置、低压注入装置、反应堆堆芯喷雾器等系统构成。
日本政府不但订有各种核发电安全对策的规章制度,而且对核电站从设计、兴建到投产后的安全运转都实施积极的监督和干预。设计阶段,通产省首先听取各方专家对所设计核反应堆的安全性进行充分论证,然后由通产大臣发放准许制造的许可证。建设阶段,在对工程设计、施工方法和内容进行认真的审查之后,由通产省授予准建权。一个核电站竣工而未投入运转之前,通产省将对它进行严格的验收。
此外,对管理操作人员也进行严格的挑选和训练。新人进站后,首先要在有经验的操作员的指导和监督下见习一年,然后到操作训练中心参加标准训练课程的学习,才可担任辅机操作员。工作五至六年后,辅机操作员才能作为主机操作员走上关键技术岗位。具有六至七年主机操作员经历,并通过了国家考试者,才有资格被选拔为运转负责人。此外,主机操作员每三年需接受一次运转训练中心的模拟训练,辅机操作员每年需接受三次模拟训练。
为加强核安全的研究,完善核安全对策,日本科学技术厅决定,在核安全委员会内设立核事故分析专门机构。
核事故分析专门机构的任务是,研究如何从组织上保障核设施的安全,经常重新估价安全措施的可靠性,以防止重大事故发生。此外,这个专门机构还要制定紧急情况下的人员撤离方案,对引起事故的错误操作原因进行综合研究。
为加强核安全管理和防范措施,日本科技厅要设立两个咨询系统,一个是国外核事故可能造成对日本污染的预测预报系统;另一个是能够在核事故发生后及时提供切实可行措施的紧急技术建议系统。
预测预报系统以气象数据为依据,要能测出距日本2000~3000公里以内地区的核辐射剂量。紧急技术建议系统要掌握国内所有核成套设备的管道线路图和其他数据,在非常情况下根据这些数据,及时提出如何防止事故扩大及减少放射性污染等技术性建议。
日本科技厅认为,这些机构虽然是一种咨询性质的机构,但是他们可以协助核安全委员会,迅速地为国家制定有效的应急对策。
前苏联切尔诺贝利核电站发生事故后,日本更加清醒地认识到进一步强化安全对策的重要性。他们进一步充实完善国家有关发展核电的各种规章制度,使核电技术标准更加完善。国家对核电站实行有效的监督、管理,制定新的核反应堆的投产、废弃的规定与措施,制定与核燃料循环相应的技术标准。国家还建立专门的机构使安全检查制度化。加强核电企业的管理机能,把确保安全作为企业经营最重要的一环。
日本还开展“官、民、学”三位一体的研究体制,积极推进新的核发电技术和安全防护技术的研究,要做到防患于未然。同时还考虑应急状态下的防护措施,如发展专用机器人。
日本能做到的事情,别的国家也可以去做。核技术终将会成为一门可以使人完全放心的安全技术。
前苏联切尔诺贝利核事故这种坏事正在被各国认真总结教训,逐渐转变为推动本国核电事业健康发展的好事。他们完善了各种有关核能的法规,规定了核能委员会的职能、核能使用部门的职能和监督机构的职能。
在核能领域,由于切尔诺贝利的震动,1986年成了十分活跃的一年,我们国家还派出记者特意对西欧的核电部门进行考察访问。由于联邦德国核电事业无论在经济技术方面还是设备安全、管理严格方面均堪称楷模,记者对联邦德国核电事业作了一番巡礼,向中国读者提供了许多可作形象思维的感性材料。
对前联邦德国来说,“除了核电之外,没有别的选择”。
从前联邦德国的经验来看,核电除了清洁价廉之外,还有两个被我们曾经忽视的好处:一是推动高技术工业发展,带动相关部门同步发展;二是锻炼一支高水平的科研和建设队伍。以生产电力的多寡和运转率为标准,世界前七位核电站全部在前联邦德国。前联邦德国核电站以其经济效益高、设备可靠和人员专业化程度高着称于世。
前联邦德国的核电事业为人们展示了一个十分可信的现实,事实胜于雄辩;核能的高效及安全,只要人们严肃认真地对待,是可以做到的,是切实可行的。
目前,国际上核电站设计专家为提高核电站的安全系数进行了深入的调查研究。研究方向大体有两个,一是探讨地下核电站的可行性,二是增补地上核电站的保安措施,尤其是对意外险情的防范措施。研究的结果无疑将导致出现更安全的核电站。
对地上核电站安全运营问题的研究,得出了所谓综合保安的设想,并具体化为一些新的设计与运营规则。这些新规则要求,核电站设计者在设计时和操作员在值班时,均应考虑和分析可能导致事故的某些意外情况。现有核电站有一套对付反应堆发生设想有可能发生的故障的技术手段,但是过去美苏核电站事故表明,核电站在运营中会出现一些意想不到的情况,所以新规则要求核电站的设计中要有能够帮助操作员,在出观意外险情时及时排除险情的技术装置。
新规则的另一个重要部分是所谓“双防系统”。现有的核电站都有一个钢筋混凝土防护罩,旨在防止反应堆出故障时其放射性物质逸出而危害附近的人畜和环境。但已发生的核电站事故表明,单有这种防护罩还不行。一旦出现未预料到的情况而罩内压力猛升至5个大气压以上,罩本身就可能失去密封性甚至被胀破(爆炸)。新规则要求核电站附设一套可确保操作员使罩内压力及时降至通常水平的技术设备,必要时操作员还可以启动防辐射的过滤装置。这就是新规则所说的“双防系统”。
地下核电站的必要性和可行性问题,已被认定,它比地上核电站更为安全,并且经济和技术上都是可行的。前苏联的核反应堆的防护罩只有1.6米厚,反应堆内的熔融核燃料一旦逸出而压到罩壁上,不到1小时就会把罩烧毁。在新的“核电站-88”设计中,防护罩也只能耐受4.6个大气压的内部压力,电缆、管道等也只能耐受8个大气压,而在反应堆核燃料熔融事故中蒸汽与氢的爆炸会产生高达13~15个大气压的压力。所以,在未能设计出“绝对安全的反应堆”之前,应将核电站建在地下。目前所说的地下核电站,是把反应堆和控制系统建在石质或半石质地层中的中小型核电站。
据分析,这种地下核电站至少可保证运营中不危害周围环境,不发生切尔诺贝利核电站那种浩劫式的事故后果,而且便于封存寿终正寝的反应堆,减轻地震对核电站的影响。此外,把核电站转入地下还可以使核电站的建设得以在现有技术水平上得到发展,而无须等到“绝对安全”的核电站设计问世之后再发展核屯事业。进一步的分析表明,把4个机组的100万千瓦核电站反应堆和控制系统建在50米深的地下,建筑费用只、增加11%~15%,但如果把关闭核电站所需费用算进去,那么地下核电站的造价比地上核电站还要低一些。拿2个机组的50万千瓦供热核电站来说,将反应堆设在地下的建筑费用比地上同类核电站多20%~30%,如把关闭核电站所需费用打进去,则只多4%~11%。
1995年底时全球运营中的核电站为437个。
正在运行中的核电站,规模上美国居首位,其次为法国、日本、德国、俄罗斯、加拿大。法国核电占法国电力总量的78.2%,核电开发几乎达到极限。
国际上的分析家早于1993年5月作了预测,认为以后10年内亚洲对核电的需求将激增。
核能开发是世界各国21世纪能源战略的发展重点。
核电这门现代高技术产业正以它强大的生命力,克服它前进道路上的种种障碍,茁壮成长,日趋成熟。
❻ 今年的日本大地震,核泄漏成为世界关注焦点,核能源是第几次科技革命中开发利用的
第3次科技革命中开发利用
能是人类历史上的一项伟大发明,同时也可以叫它为原子能。这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。1902年 居里夫人经过4年的艰苦努力发现了放射性元素钋和镭。1905年爱因斯坦提出质能转换公式。20多年以后德国科学家奥托哈恩用中子轰击铀原子核,发现了核裂变现象,核能源开始进入资本主义国家的军事领域。
在1945年之前,人类在能源利用领域只涉及到物理变化和化学变化。二战时,原子弹诞生了。人类开始将核能运用于军事、能源、工业、航天等领域。美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。
❼ 日本多少天能制造出核武器日本拥有多少核材料
一般估计,日本研制出核武器到投入使用大约为6个月到1年时间。日本的核弹设计者完全可以在时间限度内拿出一个初级核爆炸装置,不过作为准备在战场上使用的核武器,还有很长的一段距离。早在1995年,日本《宝石》杂志就披露,日本能在183天内制造出原子弹。
据报道,日本一直借核电公开囤积核原料。上世纪90年代末,迫于国际社会的压力和国民的反对,日本政府无法大量生产或进口钚元素,于是想出变通的办法:以能源再利用为名,将国内核电站用过的核废料运往西欧,经处理后提取高纯度钚,同时“夹带”更多的钚元素回国。1999年到2005年,日本每年从西欧运回约900千克钚,远超核废料再处理回收的量。如果把这900千克钚全部用来制造核弹的话,可年产60枚核弹。据美国专家估算,日本目前已经成为全球最大的武器级钚持有国,其钚元素储量已经超过美国核武库中100吨的数量,可生产上万枚核弹,还在以每年5吨左右的速度递增。
❽ 二十世纪,日本核电的发展是什么样的
日本电力设备的结构,战前是“水主煤从”,战后从20世纪60年代初起变成“油主水从、煤从”。20世纪70年代,特别是第一次“石油危机”后,发电用能源向多样化发展。在这一过程中,同油电在整个发电量中的比重下降成正比,核电飞速增长。
核电在日本所以能够异军突起,主要在于核燃料用在发电具有很多优越性。在至今人类能掌握的各种发电能源中,它是最经济、稳定的高效能源。